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Since man uses the sea for transportation, waste dis-
posal, and food, one goal of coastal management is to
diminish the effect of the first two uses on the third.
Doing so requires some appreciation of how episodic
events such as from shipping accidents or dredging, and
chronic stresses such as contamination from waste dis-
posal, compare with fishing in terms of their impacts on
living marine resources. These are all different stresses
on individual fish and the issue resolves to extrapolating
these stresses to the population level. It is not possible to
quantify population effects precisely but it is possible to
show that population effects of episodes and of chronic
contamination can be compared with the effect of fish-
ing.

Numerous authors have demonstrated the use of
Leslie matrices to project population effects of different
stresses (e.g. Vaughan and Saila, 1976; DeAngelis et al.,
1980; O’Neill et al., 1981; Vaughan, 1981; Vaughan
et al., 1984; Schaaf et al., 1987; Schaaf et al., 1993). This
paper is an expansion of Schaaf ef al. (1987, 1993) with
fishing explicitly included as one of the possible chronic
impacts on population. A Leslie matrix is a matrix
containing age-specific survival probabilities P, and fe-
cundities f,. Where P, is the probability of an individual
surviving from year ¢t — 1 to ¢ and f; is the fecundity
(number of eggs per female) for fish of age . With these
parameters and relative numbers of individuals in each
age-class in year ¢, multiplying the age-structure matrix
by the survival and fecundity (the Leslie) matrix yields
the age structure in year ¢+ 1.

With an invariant matrix (i.e. the P’s and f’s remain
the same for all years) all one is really doing is projecting
populations by this formula:

S(t+x) = S(¢) exp(mx),
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Age x  Survival & fecundity = Age
structure matrix structure
Year ¢ Yeart+ 1
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where S is population size, r is the growth rate of the
population and x is the number of years you wish to
project. The equivalence of this in a Leslie matrix is that

r=1In(A),

where A is the dominant eigenvalue of the matrix.

It is obvious that if In(X) > 0 the population, given
enough time, will become infinite. Similarly if In(X) < 0
the population will become extinct. The population can
only be stable if In(A) = 0. Vaughan and Saila (1976)
have derived a formula to adjust P, of a Leslie matrix so
that A = 1. It is recognized that, in reality, population
sizes of feral animals vary greatly from year to year but
that over the long term there is a stable age distribution
around which the annual fluctuations occur. Adjusting
P, to stabilize the matrix simply allows comparisons
among various simulated effects on the P’s and f’s. It is
the ability to manipulate the individual elements of the
matrix that makes it so attractive a way to simulate and
compare among different ways of affecting populations.

Figs. 1-4 are results of using this model to project
croaker (Micropogonias undulatus) population over 50
years given various impact scenarios. The life-history
data (i.e. the P’s and f’s) for that population are reported
(Schaaf et al., 1987) to be P = 0.27 for all years except
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Fig. 1 50-year population projection for base case (steady state) and
with single-year catastrophes that eliminate all eggs or 25% of

all age-classes.
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Fig. 2 50-year population projections for annual (i.e. chronic) 10%
excess (beyond steady state) loss of eggs, 15% decreased fe-

cundity of all ages, 10% additional fishing mortality.

Py, f =118, 385, 682, 1111, 1841, 2483, and 3267 (al
times 1000) eggs per females of age 1-7, respectively

The calculated P; required for steady state is 1.2 x 1073

(i.e. one egg in 83000 becomes a one-year-old fish)

These data provide a concrete example but fundamental

1

comparisons among various impacts illustrated in the
figures are independent of any particular set of life his-

tory data or simulated extents of impact. In all figures,

population changes are plotted relative to the base case
in terms of numbers of 2 + -year-old fish. If the resource

for a particular species consists of younger (or only
older) fish, the basic comparisons remain unchanged.
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Fig. 3 50-year population projections for annual (i.e. chronic) 10%
additional fishing mortality with weak, medium, or strong
density-dependent compensation.
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Fig. 4 50-year population projections for single-year catastrophes and
weak density-dependent compensation.

Fig. 1 shows three cases: (1) the base case (no impacts)
with P; set to its steady-state value, and the cases where,
in a single year, no eggs become one-year-old fish, (2)
and (3) where survival is decreased by 25% for all eggs
and all fish of all ages. If no eggs survive in one year, the
population rebounds in subsequent years but never
reaches its original steady-state value. If all ages suffer
reduced survival in one year, the entire population de-
creases to a lowered level for all subsequent years. In
both cases with one catastrophic year, P, is at its steady-
state value in all except that one year, so A = 1 in all but

that year, and the population returns to steady, but
lower, level.
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Fig. 2 compares the base case with three chronic im-
pacts: (1) a 10% permanent decrease in N, as could
occur with eggs or larvae exposed to contamination, (2)
a 20% permanent decrease in all the f’s as could occur
with adults suffering reproductive damage because of
exposure to contamination, and (3) a 10% permanent
decrease in the P’s for all two-year-old and older fish as
could occur with increased fishing effort. All of these
impacts set the population on a permanent downward
track. The first just decreases N, every year and the
others force A to be always < 1. Permanently decreasing
Ny by a given percentage and decreasing all the f’s by the
same percentage would be mathematically identical and
constitute identical impacts. For a given percent reduc-
tion, increased fishing always has the larger population
effect than impacts on the zero-year-class or on fecun-
dity because fishing removes individuals from all except
the youngest age-classes and all the eggs those fish
would have contributed.

Fig. 3 repeats Fig. 2 (for fishing) but with three levels
of density-dependent compensation that increase P, as
N, decreases according to

Pl = Pl,steady eXP(d(l - NO)/NOSteady)y

where P gieady and Nogeady are the Py and Ny under the
base condition, and d = 0.5, 1, or 4 all of which are
arbitrary but progressively stronger density-dependen-
cies.

Fig. 3 demonstrates the importance of feedback in
maintaining populations in the face of excess mortality.
In this particular case the feedback is assumed to occur
through increased success of eggs in the presence of
fewer eggs but there are other possibilities such as in-
creased fecundity or survival of adults. The exact
mechanism is unimportant but the principle is essential.
In the absence of density-dependent compensation, the
projections in Fig. 2 would apply showing that chronic
excess mortality would eventually drive populations to
extinction. Since fishing is excess mortality but is
nonetheless a sustainable exploitation of marine re-
sources, density-dependent compensation must exist.
Stocks can be overfished and driven almost to extinction
when exploited to an extent that overwhelms compen-
sation but the fact that there is an acceptable level of
exploitation argues for the existence of compensation.
The only possible exception would be complete sto-
chasticity whereby the size of a year-class is unrelated to
any prior year making any deterministic model irrele-
vant. It would then be impossible to conclude that im-
pacts on fish in any year would have long term
population consequences. Versions of Fig. 3 could be
presented like Fig. 2 where, instead of fishing, the excess
mortality occurs via losses of annual eggs and larvae or
losses of fecundity. Such plots would be identical to
Fig. 3 in showing in that compensatory mechanisms
would prevent an inexorable drive to extinction.

Recognizing that density-dependent compensation
exists is not the same as quantifying it. The three dif-
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ferent strengths used in Fig. 3 are arbitrary. The highest
one only demonstrates that if the assumed feedback is
very strong, the resulting relationship can approach
chaos (May, 1976) and is unrealistic. Nonetheless, while
it is not quantifiable, feedback exists. Fig. 4 repeats the
single-year catastrophes of Fig. 1 but with the weak
density-dependence applied to Fig. 3. Here, the impor-
tant point is that the same feedback that allows fishing
to be a viable enterprise also greatly diminishes the effect
of very bad years. In fact, it erases the effect of catas-
trophes over a time period determined by life history
parameters of the population and the strength of den-
sity-dependent compensation.

There are many ways to simulate randomness and a
figure could be included to acknowledge that just ran-
dom noise applied to P; in the base case (no impacts on
any year-classes and no density-dependence) produces
population projections that cover the ranges induced by
the various impacts with and without density-depen-
dence. Even with detailed knowledge of the annual
mortality imposed by cooling water intakes on white
perch (Morone americana), Vaughan and Van Winkle
(1982) concluded that random noise in year-class sizes
would prevent detection of an annual loss of even 50%
with less than 20 years of field data. Given the known
interannual variability in year-class sizes of Atlantic
menhaden (Brevoortia tyrannus), Vaughan et al. (1986)
concluded that single catastrophic years that decrease an
entire year-class by less than 70% (or the entire fished
population of 2+ -year-olds by less than 40%) would
not be detected in annual catch statistics.

There are much more subtle uses of a Leslie matrix
than exemplified here where it has been forced to rep-
resent only the stationary condition (invariant age dis-
tribution). This is the condition asymptotically
approached by populations as arbitrary initial age dis-
tributions proceed with constant survival and fecundity
values. Caswell (1989) has demonstrated the power of
matrix algebra in exploring the non-stationary as well as
stationary conditions and sensitivity of populations in-
dividual elements of the matrix. Fox and Guervitch
(2000) building on the analytical groundwork of Caswell
for non-stationary cases have demonstrated the depen-
dence of matrix elements and therefore population
projections on the actual numbers of individuals in each
age group.

Such extensions of the basic matrix can be mathe-
matically complex but do not alter the basic points that
(1) different types of impacts whether episodic or
chronic can be compared on the common basis of how
they would affect future populations, (2) density-
dependent compensation must either exist or future
population sizes are independent of past impacts, (3)
density-dependent compensation eventually erases the
population effects of single-year catastrophes and (4)
fishing has a more severe effect on future populations
than chronic impacts that decrease only first-year sur-
vival or fecundity. Moreover, the 10% and 15% con-
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tinuous non-fishing impacts simulated in Fig. 2 are ra-
ther large and would have to be imposed over wide
spatial scales to actually occur. These points need to be
kept in mind to put non-fishing impacts in the context of
fishing effects on resource populations.

Rather than inserting more graphical examples into
this paper, an executable program (LeslicGAME.exe
and source code) is available from the author and on the
internet (ftp://spo.nos.noaa.gov/public/Lesfile) which
illustrates all its points by allowing the reader to simu-
late different levels and types of impacts and different
levels of density dependence with 25 sets of life history
data (including those for croaker) taken from DeAngelis
et al. (1980), O’Neill et al. (1981), Vaughan (1981), and
Schaaf et al. (1987). The author recognizes this to be a
simple application of a Leslic matrix and that much
more sophisticated applications are commercially
available.

Views expressed here are those of the author and not necessarily those
of the National Oceanic and Atmospheric Administration.
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